AP Calculus

Limits Test Additional Problems

Find the following limits. Do not show any improper mathematics! If a limit does not exist, perform left and right hand limits and tell whether the result is $-\infty$ or $+\infty$.

1. Evaluate $\lim _{x \rightarrow 3} \frac{x^{2}+4 x-21}{x-3}$
2. Evaluate $\lim _{x \rightarrow 2} \frac{4 x^{2}-7 x-2}{x-2}$
3. Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{4-x}-2}{x}$
4. Evaluate $\lim _{x \rightarrow 9} \frac{x+4}{x-9}$
5. Evaluate $\lim _{x \rightarrow+\infty} \frac{x-5 x^{3}}{2 x^{3}-6 x+11}$
6. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 2 x}{9 x}$
7. Evaluate $\lim _{x \rightarrow 81} \frac{\sqrt{x}-9}{x-81}$
8. Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{7 x^{2}+7 x}}{3 x+1}$
9. Find the vertical asymptotes (if any) of $f(x)=\frac{8}{(x-7)^{3}}$.
10. Find the horizontal asymptotes (if any) of $f(x)=\frac{7 x+3}{\sqrt{5 x^{2}-1}}$
11. Prove that the function defined by $f(x)=\frac{3 x^{2}-x-2}{x-1}$ is discontinuous at $x=1$, show that the discontinuity is removable, and redefine f so that the discontinuity is removed.
12. Determine at what values of x the following function is discontinuous. Make sure you answer completely by using the test for continuity at a number.

$$
f(x)=\left\{\begin{array}{cl}
x^{2}-4 & \text { if } x \leq-2 \\
4-x^{2} & \text { if }-2<x<2 \\
5-x & \text { if } x \geq 2
\end{array}\right.
$$

13. Given the Intermediate Value Theorem holds for $f(x)=4 x^{2}-4 x$ on the interval [1, 2], find the value of c such that $f(c)=3$.
14. Use the Intermediate Value Theorem to show that $f(x)=x^{3}-4 x^{2}+4 x+3$ has at least one zero between $x=-1$ and $x=2$. Do not sketch the graph. Do not find the zero(s). Use the theorem to show that a zero must exist.
15. Prove: $\lim _{x \rightarrow 4}\left(x^{2}-3 x+4\right)=8$
16. Evaluate $\lim _{x \rightarrow 0} \frac{x^{6}+5 x^{4}}{x^{4}}$
17. Evaluate $\lim _{x \rightarrow 7} \frac{x^{2}-4 x-21}{x-7}$
18. Evaluate $\lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x}$
19. Evaluate $\lim _{x \rightarrow 5} \frac{x+4}{x-5}$
20. Evaluate $\lim _{x \rightarrow+\infty} \frac{3-x+2 x^{3}}{5 x^{3}-7 x+1}$
21. Evaluate $\lim _{x \rightarrow 0} \frac{\sin 8 x}{\sin 2 x}$
22. Evaluate $\lim _{x \rightarrow 49} \frac{\sqrt{x}-7}{x-49}$
23. Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{5 x^{2}-2 x}}{7 x+1}$
24. Find the vertical asymptotes (if any) of $f(x)=\frac{x+5}{x-2}$.
25. Find the horizontal asymptotes (if any) of $f(x)=\frac{5 x-2}{\sqrt{10 x^{2}+3}}$
26. Prove that the function defined by $f(x)=\frac{x^{2}-x-20}{x-5}$ is discontinuous at $x=5$. Determine if the discontinuity is removable or essential. If removable, redefine f so that the discontinuity is removed.
27. Determine at what values of x the following function is discontinuous. Make sure you answer completely by using the test for continuity at a number.

$$
f(x)=\left\{\begin{array}{cl}
x^{2}-9 & \text { if } x \leq-3 \\
9-x^{2} & \text { if }-3<x<3 \\
5-x & \text { if } x \geq 3
\end{array}\right.
$$

28. Given the Intermediate Value Theorem holds for $f(x)=2 x^{2}+13 x$ on the interval $[0,1]$, find the value of c such that $f(c)=7$.
29. Use the Intermediate Value Theorem to show that $f(x)=x^{3}-3 x^{2}+5 x-1$ has at least one zero between $x=0$ and $x=1$. Do not sketch the graph. Do not find the zero(s). Use the theorem to show that a zero must exist.
30. Prove: $\lim _{x \rightarrow 3}\left(x^{2}-2 x+1\right)=4$

Consider the graph of the following function f. The open dot is at 1 and the closed dot is at -1 .
31. Find the following. (One point each.)

(a) $\lim _{x \rightarrow 0^{-}} f(x)$
(b) $\lim _{x \rightarrow 0^{+}} f(x)$
(c) $\left.\lim _{x \rightarrow 0} f(x)\right)$
(d) $f(0)$
(e) State why this function is discontinuous at $x=0$. Be specific. Use the definition of continuity.

Below are the answers... they are not complete solutions.

1. 10
2. 9
3. $-\frac{1}{4}$
4. $\lim _{x \rightarrow 9} \frac{x+4}{x-9} \nexists$
$\lim _{x \rightarrow 9^{+}} \frac{x+4}{x-9}=+\infty$ and $\lim _{x \rightarrow 9^{-}} \frac{x+4}{x-9}=+\infty$
5. $-\frac{5}{2}$
6. $\frac{2}{9}$
7. $\frac{1}{18}$
8. $-\frac{\sqrt{7}}{3}$
9. f has a vertical asymptote at $x=7$ because $f(7) \nexists$ and $\lim _{x \rightarrow 7} f(x)= \pm \infty$.
10. Since $\lim _{x \rightarrow \infty} f(x)=\frac{7}{\sqrt{5}} f$ has a horizontal asymptote at $y=\frac{7}{\sqrt{5}}$.

Since $\lim _{x \rightarrow-\infty} f(x)=-\frac{7}{\sqrt{5}} f$ has a horizontal asymptote at $y=-\frac{7}{\sqrt{5}}$.
11. Since $f(1) \nexists f$ is discontinuous at $x=1$.

Since $\lim _{x \rightarrow 1} f(x)=5$, the limit exists and the discontinuity is removable.
$f(x)=\left\{\begin{array}{cc}\frac{3 x^{2}-x-2}{x-1} & \text { for } x \neq 1 \\ 5 & \text { for } x=1\end{array}\right.$
12. Make sure you show complete continuity tests at both $x=-2$ and $x=2$.
f is continuous at $x=-2$ because $f(-2)=\lim _{x \rightarrow-2} f(x)$
f is discontinuous at $x=2$ because $\lim _{x \rightarrow 2^{+}} f(x) \neq \lim _{x \rightarrow 2^{-}} f(x) \therefore \lim _{x \rightarrow 2} f(x) \nexists$
13. $f(x)=3 \longrightarrow x=-\frac{1}{2}$ or $x=\frac{3}{2}$ but $-\frac{1}{2} \notin(1,2) \therefore c=\frac{3}{2}$ only.
14. Since $f(-1)=-6<0$ and $f(2)=3>0$ by the IVT $f(x)=0$ for some $x \in(-1,2)$.
15. You should get $\delta=\min \left\{1, \frac{\epsilon}{6}\right\}$
16. 5
17. 10
18. $-\frac{1}{6}$
19. $\lim _{x \rightarrow 5} \frac{x+4}{x-5} \nexists$

$$
\lim _{x \rightarrow 5^{+}} \frac{x+4}{x-5}=\infty \text { and } \lim _{x \rightarrow 5^{-}} \frac{x+4}{x-5}=-\infty
$$

20. $\frac{2}{5}$
21. 4
22. $\frac{1}{14}$
23. $-\frac{\sqrt{5}}{7}$
24. f has a vertical asymptote at $x=2$ because $f(2) \nexists$ and $\lim _{x \rightarrow 2} f(x)= \pm \infty$.
25. Since $\lim _{x \rightarrow \infty} f(x)=\frac{5}{\sqrt{10}} f$ has a horizontal asymptote at $y=\frac{5}{\sqrt{1}}$.

Since $\lim _{x \rightarrow-\infty} f(x)=-\frac{5}{\sqrt{10}} f$ has a horizontal asymptote at $y=-\frac{5}{\sqrt{10}}$.
26. Since $f(5) \nexists f$ is discontinuous at $x=5$.

Since $\lim _{x \rightarrow 5} f(x)=9$, the limit exists and the discontinuity is removable.
$f(x)=\left\{\begin{array}{cc}\frac{x^{2}-x-20}{x-5} & \text { for } x \neq 5 \\ 9 & \text { for } x=1\end{array}\right.$
27. Make sure you show complete continuity tests at both $x=-3$ and $x=3$.
f is continuous at $x=-3$ because $f(-3)=\lim _{x \rightarrow-3} f(x)$
f is discontinuous at $x=3$ because $\lim _{x \rightarrow 3^{+}} f(x) \neq \lim _{x \rightarrow 3^{-}} f(x) \therefore \lim _{x \rightarrow 3} f(x) \nexists$
28. $f(x)=7 \longrightarrow x=-7$ or $x=\frac{1}{2}$ but $-7 \notin(0,1) \therefore c=\frac{1}{2}$ only.
29. Since $f(0)=-1<0$ and $f(1)=2>0$ by the IVT $f(x)=0$ for some $x \in(0,1)$.
30. You should get $\delta=\min \left\{1, \frac{\epsilon}{5}\right\}$
31. (a) 1
(b) -1
(c) \nexists
(d) -1
(e) f is discontinuous at $x=0$ because $\lim _{x \rightarrow 0} f(x) \nexists$

